Computer Access Technology /\
\7

Corporation .,

2403 Walsh Avenue, Santa Clara, CA 95051-1302 Tel: +1/408.727.6600 Fax: +1/408.727.6622

CATC™ Scripting Language
Reference Manual for
Firelnspector™

Document Revision 1.0

December 17, 2001 730-0026-00

CATC SCRIPTING LANGUAGE 1.0
Reference Manual

CATC Scripting Language Reference Manual
for Firelnspector, Document Revision 1.0

Document Disclaimer

The information contained in this document has been carefully checked and is
believed to be reliable. However, no responsibility can be assumed for inaccuracies
that may not have been detected.

CATC reserves the right to revise the information presented in this document
without notice or penalty.

Trademarks and Servicemarks

CATC and Firelnspector are trademarks of Computer Access Technology Corpora-
tion.

All other trademarks are property of their respective companies.

Copyright

Copyright 2001, Computer Access Technology Corporation (CATC). All rights
reserved.

This document may be printed and reproduced without additional permission, but
all copies should contain this copyright notice.

Part number: 730-0026-00

CATC SCRIPTING LANGUAGE 1.0 FOR FIREINSPECTOR
Reference Manual Table of Contents

TABLE OF CONTENTS

Tableof Contentscoiiiiiineiinnneeennnnnss i

1 Introduction..........covtiiiintiiinereennneeennnnnons 1
7 - 1 11 e 3
Literalso 3
Integers . ..o 3
SIS . . ot 3
Escape Sequences. 4

LSt oo 4

Raw Bytes. 4

Null. o 4
Variables 5
Global Variables. 5

Local Variables. 6
CONStANES. . . o oot 6

3 EXPressionscccviiieeeeeetecessssnossssssssssnnans 7
Sel 8Ct EXPIESSION . . vttt et et e et e e 7

4 Operators......ccooeeeeeeeetteeessssssssssssssssssnnans 9
OPETAtIONS. . . v e ottt e et e e e 9
Operator Precedence and Associativitycoovuvnon.... 9

5 Commentscovueiiiinerenenorosenssossnssosnnses 15
6 Keywords........oiiiiiiiiiiiiiriiennerennnneennnnns 17
T Statementscoetiiiitiiiiititttttittttttenenaas 19
Expression Statementst e 19
fStatements 19
if-else Statements 19
while Statements. 20
for Statements 20
return Statementst 21
Compound Statementsiuiiitit i 22

CATC SCRIPTING LANGUAGE 1.0

Reference Manual Table of Contents
8 Preprocessingiiiiiiiiiiiiiiiiiiiittietnaas 25
L G111 11 27
10 Transaction and Packet Context Fields 29
Transaction Context Fields. 29
1394 TransactionsSot it it e e 29

IPv4 over 1394 Transactionsouiiuueeuninnenn... 29

IP Datagram Transactions.uuiutiteneneennann.. 30
Datagram header fields. 30

IP Protocol Transactions.t 31
TCPheaderfields........... 31
UDPheaderfields. i 31

ICMP header fields. i 32

FCP Transactions:. oottt et e 32

Fields in all FCP transactions:c..ouu. ... 32

Fields defined for AV/C transactions: 32

Packet Context Fields i 33
Fields defined for packet-level transactions in Firelnspector. 33
Standard 1394 packet fieldnames 34
Example 35

11 Functionsiiiiiitiinneeeeeeneeeeoonacecannnaans 37
12 Primitives. . oo ittt ittt iteneeeeoneeeeeonneeasannnnns 39
Call() . oot 39
Format() e 39
Format Conversion Characters.ccuuireenn... 40
GetNBILS(). « o v vttt 41
NEeXINBItS(). . oot et 42
ResOIVE(). . oo 43
TraCe(). v oot 43

13 Decoder Primitivesccoiiitiiieeeeenneeeeannanns 45
ADOTt() ..ot 45
AddCell() ..o 45
AddDataCell().o 47
AddEvent() 48
AddSeparator() e 49
BeginCellBlock() 49
Complete() . .ottt 52

CATC SCRIPTING LANGUAGE 1.0 FOR FIREINSPECTOR

Reference Manual Table of Contents
EndCellBlock(). oo e 53
GetBitOffset()o 53
PeekINBItS(). . o oo ot 54
Pending(). oo e 54
Reject() . oot 55

14 Firelnspector-Specific Primitivesc0vvven. 57
BitfieldInit() 57
Get NBi t s -- Additional parameters, 57
Next NBi t s -- Additional parameters 58
BitfieldDialog().o 58
AddCel | -- Supplementary addi ti onal _i nfo constants. 59
Example for Firelnspector-Specific Primitives 60

Example Code. e 60
Example Output 62

ISModules . ..o viiiniiiiiii ittt essneresenosssnnnsss 65

Module FUnctionsot 65
ProcessData() ...t e 65
CollectData(). . .. oo et 65
BuildCelIList() . ..o v e 65

Module Data 66
ModuleTypeo e 66
OUtPULTYPE . . . et 66
InputType . ..o 66
LevelName 66
DecoderDesc.o 66
lcon . .o 67

il

CATC SCRIPTING LANGUAGE 1.0
Reference Manual Table of Contents

iv

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 1
Reference Manual Introduction

CHAPTER 1: INTRODUCTION

CATC Scripting Language (CSL) was developed to create scripts that allow users
to do file-based decoding with CATC analyzers. CSL is used to edit CATC Decode
Scripting (CDS) files, which are pre-written decoder scripts supplied by CATC.
These script-based decoders can be modified by the users or used as-is. Additional-
ly, users can create brand new CDS files. This document describes the basics of
CSL syntax and also defines Firelnspector-specific contexts and primitives.

Decoder scripts for Firelnspector are distributed in the \ Scr i pt s folder of the
FireInspector installation directory. They are identifiable by the .dec extension.
These scripts are tools to decode and display transactions. Users can also add
entirely new, customized decoders to fit their own, specific development needs.
Firelnspector looks in the \ Scr i pt s directory and automatically loads all of the
.dec files that it finds. To prevent a particular decoder from being loaded, change its
extension to something other than .dec or move it out of the \ Scr i pt s directory.

CSL is based on C language syntax, so anyone with a C programming background
will have no trouble learning CSL. The simple, yet powerful, structure of CSL also
enables less-experienced users to easily acquire the basic knowledge needed to start
writing custom scripts.

Features of CATC Scripting Language

¢ Powerful -- provides a high-level API while simultaneously allowing implementation of

complex algorithms.
® Easy to learn and use -- has a simple but effective syntax.
® Self-contained -- needs no external tools to run scripts.
Wide range of value types -- provides efficient and easy processing of data.
® Used to create built-in script-based decoders for analyzers.
® May be used to write custom decoders.

® General purpose -- is integrated in a number of CATC products.

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 1

Reference Manual

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 2
Reference Manual Values

CHAPTER 2: VALUES

There are five value types that may be manipulated by a script: integers, strings,
lists, raw bytes, and nul | . CSL is not a strongly typed language. Value types need
not be pre-declared. Literals, variables and constants can take on any of the five
value types, and the types can be reassigned dynamically.

Literals

Literals are data that remain unchanged when the program is compiled. Literals are
a way of expressing hard-coded data in a script.

Integers

Integer literals represent numeric values with no fractions or decimal points. Hexa-
decimal, octal, decimal, and binary notation are supported:

Hexadecimal numbers must be preceded by Ox: 0x2A, 0x54, OxFFFFFFO1
Octal numbers must begin with 0: 0775, 017, 0400
Decimal numbers are written as usual: 24, 1256, 2

Binary numbers are denoted with Ob: 0b01101100, 0b01, 0b100000

Strings

String literals are used to represent text. A string consists of zero or more characters
and can include numbers, letters, spaces, and punctuation. An empty string (" ")
contains no characters and evaluates to false in an expression, whereas a non-empty
string evaluates to true. Double quotes surround a string, and some standard
backslash (\) escape sequences are supported.

String Represented text

"Quote: \"This is a string Quote: "This is a string

literal . \"" literal."

256" 256 **Note that this does not represent the integer

256, but only the characters that make up the number.

"abcd! $9&*" abcd! $9&*
"June 26, 2001" June 26, 2001
"T 1, 2, 31" [1, 2, 3]

Table 2.1: Examples of String Literals

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 2
Reference Manual Values

Escape Sequences
These are the available escape sequences in CSL:

Escape
Character Sequence Example Output
backslash \\ "This is a backslash: \\" This is a backslash: \
double quote \ " "\"Quotes!\"" "Quotes!"
horizontal tab \t "Before tab\tAfter tab" Before tab After tab
newline \n "This is howwnto get a newine." Thisishow

to get a newline.

single quote \! "\'Single quote\"'" 'Single quote’'

Table 2.2: Escape Sequences

Lists

A list can hold zero or more pieces of data. A list that contains zero pieces of data
is called an empty list. An empty list evaluates to false when used in an expression,
whereas a non-empty list evaluates to true. List literals are expressed using the
square bracket ([]) delimiters. List elements can be of any type, including lists.

[1, 2, 3, 4]

[]
["one", 2, "three", [4, [5, [6]]]]

Raw Bytes

Raw binary values are used primarily for efficient access to packet payloads. A
literal notation is supported using single quotes:

' 001122334455667 78899 AABBCCDDEEFF

This represents an array of 16 bytes with values starting at 00 and ranging up to
OXxFF. The values can only be hexadecimal digits. Each digit represents a nybble
(four bits), and if there are not an even number of nybbles specified, an implicit zero
is added to the first byte. For example:

" FFF
is interpreted as

' OFFF'

Null

Nul | indicates an absence of valid data. The keyword nul | represents a literal
null value and evaluates to false when used in expressions.

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 2
Reference Manual Values

result = null;

Variables

Variables are used to store information, or data, that can be modified. A variable can
be thought of as a container that holds a value.

All variables have names. Variable names must contain only alphanumeric charac-
ters and the underscore (_) character, and they cannot begin with a number. Some
possible variable names are

X
_Newval ue
name_2

A variable is created when it is assigned a value. Variables can be of any value type,
and can change type with re-assignment. Values are assigned using the assignment
operator (=). The name of the variable goes on the left side of the operator, and the
value goes on the right:

x =11, 2, 3]
New val ue = x
name2 = "Smth"

If a variable is referenced before it is assigned a value, it evaluates to null.

There are two types of variables: global and local.

Global Variables

Global variables are defined outside of the scope of functions. Defining global
variables requires the use of the keyword set . Global variables are visible through-
out a file (and all files that it includes).

set d obal = 10;

If an assignment in a function has a global as a left-hand value, a variable will not
be created, but the global variable will be changed. For example

set dobal = 10;

Function()

{

d obal = "cat";
Local = 20;

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 2
Reference Manual Values

will create a local variable called Local , which will only be visible within the
function Funct i on. Additionally, it will change the value of G obal to" cat ",
which will be visible to all functions. This will also change its value type from an
integer to a string.

Local Variables

Local variables are not declared. Instead, they are created as needed. Local
variables are created either by being in a function's parameter list, or simply by
being assigned a value in a function body.

Funct i on(Par anet er)

{
}

This function will create a local variable Par anet er and a local variable Local ,
which has an assigned value of 20.

Local = 20;

Constants

A constant is similar to a variable, except that its value cannot be changed. Like
variables, constant names must contain only alphanumeric characters and the un-
derscore (_) character, and they cannot begin with a number.

Constants are declared similarly to global variables using the keyword const :

const CONSTANT = 20;

They can be assigned to any value type, but will generate an error if used in the left-
hand side of an assignment statement later on. For instance,

const constant_2 = 3;

Function()

{
}

will generate an error.

constant _2 = 5;

Declaring a constant with the same name as a global, or a global with the same name
as a constant, will also generate an error. Like globals, constants can only be
declared in the file scope.

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 3
Reference Manual Expressions

CHAPTER 3: EXPRESSIONS

An expression is a statement that calculates a value. The simplest type of expression
is assignment:

X =2
The expression X = 2 calculates 2 as the value of x.

All expressions contain operators, which are described in Chapter 4, Operators, on
page 9. The operators indicate how an expression should be evaluated in order to
arrive at its value. For example

X + 2
says to add 2 to x to find the value of the expression. Another example is
X > 2

which indicates that x is greater than 2. This is a Boolean expression, so it will
evaluate to either true or false. Therefore, if X = 3,then x > 2 will evaluate to
true; if X = 1, it will return false.

True is denoted by a non-zero integer (any integer except 0), and false is a zero
integer (0). True and false are also supported for lists (an empty list is false, while
all others are true), and strings (an empty string is false, while all others are true),
and nul | is considered false. However, all Boolean operators will result in integer
values.

sel ect expression

The sel ect expression selects the value to which it evaluates based on Boolean
expressions. This is the format for a sel ect expression:

sel ect {
<expressionl> : <statenentl>
<expression2> : <statenent2>

¥

The expressions are evaluated in order, and the statement that is associated with the
first true expression is executed. That value is what the entire expression evaluates
to.

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 3

Reference Manual Expressions
x =10
Val ue_of _x = select {
X <5 : "Less than 5";
x >= 5 : "Greater than or equal to 5";
1

The above expression will evaluate to “Greater than or equal to 5” because the first
true expression is X >= 5. Note that a semicolon is required at the end of a

sel ect expression because it is not a compound statement and can be used in an
expression context.

There is also a keyword def aul t, which in effect always evaluates to true. An
example of its use is

Astring = select {
A==1: "one";
A==2: "tw",
A == 3. "three";

A>3 : "overfl ow
default : null

¥

If none of the first four expressions evaluates to true, then def aul t will be eval-
uated, returning a value of nul | for the entire expression.

sel ect expressions can also be used to conditionally execute statements, similar
to C swi t ch statements:

sel ect {
== 1 : DoSonet hi ng();
== 2 : DoSonet hi ngEl se();
defaul t: DoNot hi ng();
1

In this case the appropriate function is called depending on the value of A, but the
evaluated result of the sel ect expression is ignored.

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 4
Reference Manual Operators

CHAPTER 4: OPERATORS

An operator is a symbol that represents an action, such as addition or subtraction,
that can be performed on data. Operators are used to manipulate data. The data
being manipulated are called operands. Literals, function calls, constants, and
variables can all serve as operands. For example, in the operation

X + 2

the variable x and the integer 2 are both operands, and + is the operator.

Operations

Operations can be performed on any combination of value types, but will result in
a null value if the operation is not defined. Defined operations are listed in the
Operand Types column of Table 4.2 on page 11. Any binary operation on a null and
a non-null value will result in the non-null value. For example, if

X = null;
then
3* X

will return a value of 3.

A binary operation is an operation that contains an operand on each side of the
operator, as in the preceding examples. An operation with only one operand is
called a unary operation, and requires the use of a unary operator. An example of a
unary operation is

'
which uses the logical negation operator. It returns a value of 0.

The unary operators are si zeof (), head(),tail (),~and!.

Operator Precedence and Associativity

Operator rules of precedence and associativity determine in what order operands are
evaluated in expressions. Expressions with operators of higher precedence are
evaluated first. In the expression

4 +9 * 5

the * operator has the highest precedence, so the multiplication is performed before
the addition. Therefore, the expression evaluates to 49.

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 4
Reference Manual Operators

The associative operator () is used to group parts of the expression, forcing those
parts to be evaluated first. In this way, the rules of precedence can be overridden.
For example,

(4+9) *5

causes the addition to be performed before the multiplication, resulting in a value
of 65.

When operators of equal precedence occur in an expression, the operands are
evaluated according to the associativity of the operators. This means that if an op-
erator's associativity is left to right, then the operations will be done starting from
the left side of the expression. So, the expression

4+9-6+5

would evaluate to 12. However, if the associative operator is used to group a part or
parts of the expression, those parts are evaluated first. Therefore,

(4+9)-(6+5)
has a value of 2.

In the following table, the operators are listed in order of precedence, from highest
to lowest. Operators on the same line have equal precedence, and their associativity
is shown in the second column.

Operator Symbol Associativity

[1 O Left to right

~ ! si zeof head tail Right to left
* / % Left to right

+ - Left to right

<< >> Left to right

< > <= >= Left to right
== I = Left to right

& Left to right

N Left to right

| Left to right

&& Left to right

[Left to right

= Right to left

Table 4.1: Operator Precedece and Associativity

10

CATC SCRIPTING LANGUAGE 1.0

CHAPTER 4

Reference Manual

Operators

Index Operator

[] Index or Raw Bytes Integer Raw = ' 001122’
subscript Rawf 1] = 0x11
List Any List = [0, 1, 2, 3, [4, 5]]
List[2] =2
List[4] = [4, 5]
List[4][1] =5
*Note: if an indexed Raw value is assigned to any
value that is not a byte (> 255 or not an integer), the
variable will be promoted to a list before the
assignment is performed.
Associative Operator
() Associative Any Any (2+4) * 3 =18
2+ (4*3) =14
Arithmetic Operators
* Multiplication Integer-integer Integer 3*1=3
/ Division Integer-integer Integer 3/ 1=3
% Modulus Integer-integer Integer 3%1=0
+ Addition Integer-integer Integer 2+2=4
String-string String "one " + "two" = "one two"
Raw byte-raw byte | Raw '001122" + '334455' =
' 001122334455’
List-list List [1, 2] +[3, 4 =11, 2, 3, 4]
Integer-list List 1+[2 3 =11, 2, 3]
Integer-string String "nunber =" + 2 = "nunber = 2"
*Note: integer-string concatenation uses decimal
conversion.
String-list List "one" + ["two"] = ["one", "two"]
- Subtraction Integer-integer Integer 3-1=2

Table 4.2: Operators

11

CATC SCRIPTING LANGUAGE 1.0

CHAPTER 4

Reference Manual

Operators

Equality Operators
== Equal Integer-integer Integer 2 ==
String-string Integer | "three" == "three"
Raw byte-raw byte | Integer '001122' == '001122'
List-list Integer [1, [2, 3]] ==1[1, [2, 3]]
*Note: equality operations on values of different
types will evaluate to false.
I= Not equal Integer-integer Integer 21=3
String-string Integer | "three" != "four"
Raw byte-raw byte | Integer '001122" ! = ' 334455
List-list Integer [1, [2, 3]] '=1[1, [2, 4]]

*Note: equality operations on values of different
types will evaluate to false.

Relational Operators

< Less than Integer-integer Integer 1 <2
String-string Integer | "abc" < "def"
> Greater than Integer-integer Integer 2>1
String-string Integer | "xyz" > "abc"
<= Less than or Integer-integer Integer 23 <= 27
equal
String-string Integer "cat" <= "dog"
>= Greater than or | Integer-integer Integer 2 >=1
equal
String-string Integer "sun" >= "npoon"

*Note: relational operations on string values are
evaluated according to character order in the ASCII

table.
Logical Operators

! Negation All combinations Integer 10 =1 I"cat" =0

of types 19 =0 et =1
&& Logical AND All combinations Integer 1&1=1 18&&!"" =1

of types 1& 0 =0 1&& "cat" =1
| Logical OR All combinations Integer 1]] 1=1 0]] 0=0

of types 1] 0=1 "" || !"cat" =0

Table 4.2: Operators (Continued)

12

CATC SCRIPTING LANGUAGE 1.0

CHAPTER 4

Reference Manual

Operators

Bitwise Logical Operators
~ Bitwise Integer-integer Integer ~0b11111110 = 0b0O0000001
complement
& Bitwise AND Integer-integer Integer 0b11111110 & 0b01010101 =
0b01010100
n Bitwise Integer-integer Integer 0b11111110 ~ 0b01010101 =
exclusive OR 0b10101011
| Bitwise Integer-integer Integer | Ob11111110 | 0b01010101 =
inclusive OR 0b11111111
Shift Operators
<< Left shift Integer-integer Integer 0b11111110 << 3 = 0b11110000
>> Right shift Integer-integer Integer | Ob11111110 >> 1 = 0b01111111
Assignment Operator
= Assignment Any Any A=1
B=C=A
List Operators
si zeof () | Number of Any Integer | sizeof([1, 2, 3]) =3
elements si zeof (' 0011223344') =5
sizeof ("string") =6
sizeof (12) =1
sizeof ([1, [2, 3]]) =2
*Note: the last example demonstrates that the
si zeof () operator returns the shallow count of a
complex list.
head() Head List Any head([1, 2, 3]) =1
*Note: the Head of a list is the first item in the list.
tail () Tail List List tail([1, 2, 3]) =1[2, 3]
*Note: the Tail of a list includes everything except
the Head.

Table 4.2: Operators (Continued)

13

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 4
Reference Manual Operators

14

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 5
Reference Manual Comments

CHAPTER 5: COMMENTS

Comments may be inserted into scripts as a way of documenting what the script
does and how it does it. Comments are useful as a way to help others understand
how a particular script works. Additionally, comments can be used as an aid in
structuring the program.

Comments in CSL begin with a hash mark (#) and finish at the end of the line. The
end of the line is indicated by pressing the Return or Enter key. Anything contained
inside the comment delimiters is ignored by the compiler. Thus,

x = 2;

is not considered part of the program. CSL supports only end-of-line comments,
which means that comments can be used only at the end of a line or on their own
line. It's not possible to place a comment in the middle of a line.

Writing a multi-line comment requires surrounding each line with the comment de-
limiters

otherwi se the conpiler would try to interpret
anything outside of the delimters
as part of the code.

The most common use of comments is to explain the purpose of the code immedi-
ately following the comment. For example:

Add a profile if we got a server channel
if(rfChannel '= "Failure")

{

result = SDPAddProfil eServi ceRecord(rf Channel,
" (bj ect Push");

Trace(" SDPAddProfi |l eServi ceRecord returned ",
result, "\n");

}

15

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 5
Reference Manual Comments

16

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 6
Reference Manual Keywords

CHAPTER 6: KEYWORDS

Keywords are reserved words that have special meanings within the language. They
cannot be used as names for variables, constants or functions.

In addition to the operators, the following are keywords in CSL:

Keyword Usage
sel ect sel ect expression
set define a global variable
const define a constant
return r et ur n statement
whil e whi | e statement
for f or statement
i f i f statement
el se i f-el se statement
def aul t sel ect expression
nul | null value
in input context
out output context

Table 6.1: Keywords

17

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 6
Reference Manual Keywords

18

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 7
Reference Manual Statements

CHAPTER 7: STATEMENTS

Statements are the building blocks of a program. A program is made up of list of
statements.

Seven kinds of statements are used in CSL: expression statements, if statements, if-
else statements, while statements, for statements, return statements, and compound
statements.

Expression Statements

An expression statement describes a value, variable, or function.
<expr essi on>;
Here are some examples of the different kinds of expression statements:

Val ue: x + 3;
Variable: x = 3;
Function: Trace (X + 3);

The variable expression statement is also called an assignment statement, because
it assigns a value to a variable.

| f Statements

Ani f statement follows the form

i f <expression> <statenent>
For example,

if (3 & 3) Trace("True!");

will cause the program to evaluate whether the expression 3 && 3 is nonzero, or
True. It is, so the expression evaluates to True and the Tr ace statement will be
executed. On the other hand, the expression 3 && O is not nonzero, so it would
evaluate to False, and the statement wouldn't be executed.

| f-el se Statements

The form for ani f - el se statement is

i f <expression> <statenentl>
el se <st at enent 2>

The following code

19

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 7
Reference Manual Statements

if (3-3]||] 2- 2) Trace ("Yes");
el se Trace ("No");

will cause “No” to be printed, because 3 - 3 || 2 - 2 will evaluate to False
(neither 3 - 3 nor2 - 2 isnonzero).

whi | e Statements

A wWhi | e statement is written as

whi | e <expressi on> <st at enent >
An example of this is

X = 2

while (x < 5)

{
)

Trace (X,
X =X + 1;
}

The result of this would be
2, 3, 4,

f or Statements

A f or statement takes the form

for (<expressionl>, <expression2>;, <expression3>)
<st at enent >

The first expression initializes, or sets, the starting value for x. It is executed one
time, before the loop begins. The second expression is a conditional expression. It
determines whether the loop will continue -- if it evaluates true, the function keeps
executing and proceeds to the statement; if it evaluates false, the loop ends. The
third expression is executed after every iteration of the statement.

—————————™ False ———» End

exprassionT | —m | expression? | ———m True ———W | statement
! v

expression

Figure 7-1: Execution of af OI statement

20

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 7
Reference Manual Statements

The example
for (x =2;, x <5, x=x+1) Trace (x, "\n");
would output

2
3
4

The example above works out like this: the expression X = 2 is executed. The
value of x is passed to X < 5, resultingin 2 < 5. This evaluates to true, so the
statement Tr ace (x, "\n") is performed, causing 2 and a new line to print.
Next, the third expression is executed, and the value of x is increased to 3. Now,

X < 5 isexecuted again, and is again true, so the Tr ace statement is executed,
causing 3 and a new line to print. The third expression increases the value of x to 4;
4 < 5istrue, so 4 and a new line are printed by the Tr ace statement. Next, the
value of x increases to 5. 5 < 5 is not true, so the loop ends.

r et ur n Statements

Every function returns a value, which is usually designated inar et ur n statement.
A'r et ur n statement returns the value of an expression to the calling environment.
It uses the following form:

return <expression>,;
An example of a r et ur n statement and its calling environment is
Trace (Hi There());
H There()
{

}

The call to the primitive function Tr ace causes the function Hi Ther e() to be
executed. Hi Ther e() returns the string “Hi there” as its value. This value is
passed to the calling environment (Tr ace), resulting in this output:

H there

return "H there";

A1 et ur n statement also causes a function to stop executing. Any statements that
come after the r et ur n statement are ignored, because r et ur n transfers control
of the program back to the calling environment. As a result,

21

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 7
Reference Manual Statements

Trace (Hi There());

H There()

{
a="H there";
return a;
b = "Goodbye";
return b;

}

will output only
H there

because when r et ur n a; is encountered, execution of the function terminates,
and the second return statement (r et ur n b;) is never processed. However,

Trace (Hi There());

Hifhere()

{
a="H there";
b = "Goodbye";

if (31!=3) return a;
el se return b;

}

will output
Goodbye

because thei f statement evaluates to false. This causes the firstr et ur n statement
to be skipped. The function continues executing with the el se statement, thereby
returning the value of b to be used as an argument to Tr ace.

Compound Statements

A compound statement, or statement block, is a group of one or more statements

that is treated as a single statement. A compound statement is always enclosed in
curly braces ({}). Each statement within the curly braces is followed by a semi-
colon; however, a semicolon is not used following the closing curly brace.

The syntax for a compound statement is

{

<first_statenent>;
<second_st at enent >;

22

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 7
Reference Manual Statements

<l ast _st at enent >;

}
An example of a compound statement is
{
X = 2;
X + 3;
}
It's also possible to nest compound statements, like so:
{
X = 2;
{
y =3,
}
X + 3;
}

Compound statements can be used anywhere that any other kind of statement can
be used.

if (3 &% 3)
{

result = "True!l";
Trace(result);

}

Compound statements are required for function declarations and are commonly
usedini f,i f-el se,whil e, andf or statements.

23

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 7
Reference Manual Statements

24

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 8
Reference Manual Preprocessing

CHAPTER 8: PREPROCESSING

The preprocessing command % ncl ude can be used to insert the contents of a file
into a script. It has the effect of copying and pasting the file into the code. Using
% ncl ude allows the user to create modular script files that can then be incorpo-
rated into a script. This way, commands can easily be located and reused.

The syntax for % ncl ude is this:
% ncl ude “includefile.inc”

The quotation marks around the filename are required, and by convention, the
included file has a . i nc extension.

The filenames given in the include directive are always treated as being relative to
the current file being parsed. So, if a file is referenced via the preprocessing
command in a .dec file, and no path information is provided (% ncl ude
“file.inc”),theapplication will try to load the file from the current directory.
Files that are in a directory one level up from the current file can be referenced using
“..\file.inc”,and likewise, files one level down can be referenced using the
relative pathname (“ di rect ory\fi | e. i nc”). Lastbutnot least, files can also
be referred to using a full pathname, such as

“C:\global _scripts\include\file.inc”

25

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 8
Reference Manual Preprocessing

26

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 9
Reference Manual Context

CHAPTER 9: CONTEXT

The context is the mechanism by which transaction data is passed in and out of the
scripts. There is an output context that is modified by the script, and there are
possibly multiple input contexts that the script will be invoked on separately.

A context serves two roles: firstly, it functions as a symbol table whose values are
local to a particular transaction; secondly, it functions as an interface to the appli-
cation. Two keywords are used to reference symbols in the context: i n and out .
Dot notation is used to specify a symbol within a context:

out . synmbol = "abcd";
out.type = in.type;

The output context can be read and written to, but the input context can only be read.
Context symbols follow the same rules as local variables: they are created on
demand, and uninitialized symbols always evaluate to null.

When a script is first invoked, it is given an input context that corresponds to a
packet or transaction that is a candidate for being a part of a larger transaction. The
output context is initially empty. It is the script's job to examine the input context
and decide if it qualifies for membership in the type of transaction that the script
was designed to decode. If it qualifies, the appropriate values will be decoded and
put in the output context symbol table, and if the transaction is complete, it will be
done. If the transaction is not complete, the script will indicate this to the applica-
tion based on its return value, and will be invoked again with the same output
context, but a new input context. The script then must decide if this new input
context is a member of the transaction, and keep doing this until the transaction is
complete.

In order to accomplish all this, state information should be placed in the output
context. It should be possible to use the output context of one transaction as an
input context to another transaction.

27

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 9
Reference Manual Context

28

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 10
Reference Manual Transaction and Packet Context Fields

CHAPTER 10: TRANSACTION AND
PACKET CONTEXT FIELDS

This chapter describes the transaction and packet context fields (symbols) that are
defined in Firelnspector. These fields define the output context for each built-in
transaction or packet type. These output contexts are then used as input to script
decoders. A script decoder declares the transaction types that it wishes to examine
by using the | nput Ty pe module variable (for more information, see

“l nput Type” on page 66).

Transaction Context Fields

The transaction context fields are listed by type of transaction.

1394 Transactions

These transactions require the module data
| nput Type = "1394 Transaction".

dat a_| en: Integer. Length of data payload in bytes. Taken from the packet
header.

Tcode: Integer. Tcode value of the transaction’s request packet.
Request er : Integer. Node ID of the transaction initiator.
Responder : Integer. Node ID of the transaction target.

Rcode: Integer. The result of the transaction. This could be the r code field from
a response packet or from the ack value of the request packet. The meaning of the
values are the same as for a packet r code.

Payl oad: Raw bytes. The data payload.
addr ess: Raw bytes. The 48-bit address.
BusReset Occur r ed: Integer. A non-zero value means that a 1394 bus reset

occurred since the last 1394 transaction; otherwise, the value is zero.

IPv4 over 1394 Transactions
These transactions require the module data | nput Type = "1 Pv4 / 1394".

Dat a: Raw bytes. The data payload of the transaction.
Dat aLengt h: Integer. The length of the payload in bytes.
Sour ce_Node: Integer. The 1394 node ID of the source node.

29

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 10
Reference Manual Transaction and Packet Context Fields

Tar get _Node: Integer. The 1394 node ID of the target node.
LF: Integer. The LF field of the encapsulation header.

dat agr am si ze: Integer. The dat agr am si ze field of the encapsulation
header.

of f set : Integer. The of f set field of the encapsulation header.
DGL: Integer. The DGL field of the encapsulation header.
et her _type: The et her _t ype of the encapsulation header.

IP Datagram Transactions

These transactions require the module data | nput Type = "I P Dat agr ani'.
Dat a: Raw bytes. Fully assembled datagram buffer.

Dat aLengt h: Integer. Length of Dat a, in bytes.

Payl oad: Raw bytes. Payload of the datagram (essentially Dat a with the
datagram header stripped off.)

Payl oadLengt h: Integer. Length of Payl| oad buffer, in bytes.

Datagram header fields

The rest of the fields are integers taken directly from the Datagram header defined
in RFC-791.

* \Version

e |HL

* Type_of Service
* Total Length

* |dentification

* Flags
* DF
* MF

* Fragnent O f set
* Tinme_to_Live

* Protocol

* Header Checksum

* Source_ Address

30

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 10
Reference Manual Transaction and Packet Context Fields

* Dest Address

IP Protocol Transactions

These transactions require the module data | nput Type = "1 P Protocol ".
Dat a: Raw bytes. The fully assembled buffer (includes protocol header).

Dat aLengt h: Integer. Length of Dat a, in bytes.

Payl oad: Raw bytes. Same as Dat a, but with the protocol header stripped off.
Payl oadLengt h: Integer. Length of Payl| oad buffer, in bytes.

TCP header fields

The following fields are valid for TCP headers. These are all integer values and
come directly from RFC-793.

* Source_ Port

* Dest_Port

* Sequence_Number

* Acknow edgnent _Nunber
e Data Ofset

* URG
* ACK
* EQL
* RST
e SYN
* FIN
* W ndow

* Checksum
* Urgent_Pointer

UDP header fields

The following fields are valid for UDP headers. These are all integer values and
come directly from RFC-768.

* Source_Port
* Dest Port

31

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 10
Reference Manual Transaction and Packet Context Fields

* Length
* Checksum

ICMP header fields

The following fields are valid for ICMP headers. These are all integer values and
come directly from RFC-792.

* Type

* Code

* Checksum
* Pointer

* |dent

* Seq

* Oiginate Tinestanp
* Receive_Ti nestanp

* Transmt _Ti mestanp

FCP Transactions:

These transactions require the module data
| nput Type = "FCP Transaction".

Fields in all FCP transactions:

CTS: CTS code of the transaction.

Cont r ol | er: Node ID of the requesting node.

Tar get : Node ID of the responding node.

Fields defined for AV/C transactions:

ct ype: Integer. AV/C ct ype.

r esponse: Integer. AV/C r esponse.

su_t ype: Integer. AV/C su_t ype. Includes extended types.
Su_i d: Integer. AV/C su_i d. Includes extended ids.
Opcode: Integer. AV/C opcode.

32

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 10
Reference Manual Transaction and Packet Context Fields

Packet Context Fields

A note about using packets as input to a script:

When a file is loaded, Firelnspector automatically decodes 1394 transactions but
does not display them. A packet (or sub-transaction) is only allowed to be a member
of one higher level transaction. This means that all of the packets that belong to
1394 transactions will not be handed to a script that takes packets as input.

Fields defined for packet-level transactions in Firelnspector
These transactions require the module data | nput Type = " Packet ".
Packet Type: Integer. A value which identifies the type of packet:

Possible values:

* 0x00 -- unknown

* Ox01 -- wite data quadl et request
* 0x02 -- wite data bl ock request

* 0Ox03 -- read data quadl et request
* 0x04 -- read data bl ock request

* 0Ox05 -- lock request

* 0Ox06 -- wite response

* 0x07 -- read data quadl et response
* 0x08 -- read data bl ock response

* 0x09 -- lock response

* OxO0A -- cycle start

* OxO0B -- isochronous data bl ock

* 0Ox0C -- bad tcode

* 0Ox0OD -- asynchronous stream

* OxOE -- dobal Asynchronous Stream Packet (GASP)
* 0x10 -- config

* Ox1l1l -- extended

* 0x12 -- link on

* 0Ox13 -- self id

* 0x15 -- bad phy packet

33

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 10
Reference Manual Transaction and Packet Context Fields

* 0x16 -- ping
Note: values >= 0x10 are phy packets.
raw_dat a: Raw bytes. Raw unparsed packet header data.

Payl oad: Raw bytes. Data payload of packet. This field will also contain a single
quadlet in the case of quadlet format packets. This field will be null if packet
contains no data.

ack: Integer. Acknowlegement value (without the error-checking bits). This field
will be null if one was not received.

Standard 1394 packet field names

The rest of these fields are simply the packet header fields right out of the 1394
specifications. For descriptions of each field, please refer to the 1394 specification.
If a packet type does not have a particular field, the field will be set to null.

t code: Integer.

header _CRC: Integer.

pri : Integer.

rt: Integer.

t|: Integer.

sour ce_| D: Integer.

desti nati on_|I D: Integer.
desti nati on_of f set: Raw bytes.
r code: Integer.

ext ended_t code: Integer.
dat a_| engt h: Integer.
guadl et _dat a: Integer.
channel : Integer.

t ag: Integer.

SYy: Integer.

cycl e_ti ne_dat a: Integer.

34

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 10
Reference Manual Transaction and Packet Context Fields

Example

The following example is taken from the file IPProtocol.dec, which is included with
the Firelnspector installation.

if (in.Payload == null)
return Reject();

if (in. Version !=4)
return Reject();

if (out.ldentification == null)

{
out.ldentification = in.ldentification;

}

el se

{
if (out.ldentification !=in.ldentification)
{

return Reject();

}

35

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 10
Reference Manual Transaction and Packet Context Fields

36

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 11
Reference Manual Functions

CHAPTER 11: FUNCTIONS

A function is a named statement or a group of statements that are executed as one
unit. All functions have names. Function names must contain only alphanumeric
characters and the underscore (_) character, and they cannot begin with a number.

A function can have zero or more parameters, which are values that are passed to
the function statement(s). Parameters are also known as arguments. Value types are
not specified for the arguments or return values. Named arguments are local to the
function body, and functions can be called recursively.

The syntax for a function declaration is

name(<paraneter 1> <paraneter2>, ...)

{
}

The syntax to call a function is

<st at enent s>

name(<paraneter 1> <paraneter2>, ...)

So, for example, a function named add can be declared like this:

add(x, vy)
{

}

and called this way:
add(5, 6);

return x + vy;

This would result in a return value of 11.

Every function returns a value. The return value is usually specified using a
r et ur n statement, but if no r et ur n statement is specified, the return value will
be the value of the last statement executed.

Arguments are not checked for appropriate value types or number of arguments
when a function is called. If a function is called with fewer arguments than were
defined, the specified arguments are assigned, and the remaining arguments are
assigned to null. If a function is called with more arguments than were defined, the
extra arguments are ignored. For example, if the function add is called with just one
argument

add(1);

37

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 11
Reference Manual Functions

the parameter X will be assigned to 1, and the parameter y will be assigned to null,
resulting in a return value of 1. But if add is called with more than two arguments

add(1, 2, 3);
X will be assigned to 1,y to 2, and 3 will be ignored, resulting in a return value of 3.

All parameters are passed by value, not by reference, and can be changed in the
function body without affecting the values that were passed in. For instance, the
function

add_1(x, vy)
{
X = 2,
y =3
return x + vy;
}
reassigns parameter values within the statements. So,
a = 10;
b = 20;
add _1(a, b);

will have a return value of 5, but the values of a and b won't be changed.

The scope of a function is the file in which it is defined (as well as included files),
with the exception of primitive functions, whose scopes are global.

Calls to undefined functions are legal, but will always evaluate to null and result in
a compiler warning.

38

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 12
Reference Manual Primitives

CHAPTER 12: PRIMITIVES

Primitive functions are called similarly to regular functions, but they are imple-
mented outside of the language. Some primitives support multiple types for certain
arguments, but in general, if an argument of the wrong type is supplied, the function
will return null.

Cal | ()

Call (<function_nane string> <arg_list list>)

Parameter Meaning Default Value Comments

function_name string

arg_list list Used as the list of parameters in the function call.

Return value
Same as that of the function that is called.

Comments

Calls a function whose name matches the f unct i on_namne parameter. All scope
rules apply normally. Spaces in the f unct i on_nane parameter are interpreted as
the ‘_’ (underscore) character since function names cannot contain spaces.

Example
Call ("Format", ["the nunber is %", 10])

is equivalent to:

Format ("t he nunber is %", 10)

For mat ()

Format (<format string> <value string or integer>)

Parameter Meaning Default Value Comments

format string

value string or integer

Return value
None.

39

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 12
Reference Manual Primitives

Comments

For mat is used to control the way that arguments will print out. The format string
may contain conversion specifications that affect the way in which the arguments
in the value string are returned. Format conversion characters, flag characters, and
field width modifiers are used to define the conversion specifications.

Example
For mat (" Ox%®©2X", 20);

would yield the string 0x14.
For mat can only handle one value at a time, so
Format ("% %", 20, 30);
would not work properly. Furthermore, types that do not match what is specified in

the format string will yield unpredictable results.

Format Conversion Characters

These are the format conversion characters used in CSL:

Code Type Output
c Integer Character
d Integer Signed decimal integer.
i Integer Signed decimal integer
0 Integer Unsigned octal integer
u Integer Unsigned decimal integer
b'¢ Integer Unsigned hexadecimal integer, using "abcdef."
X Integer Unsigned hexadecimal integer, using "ABCDEFE."
s String String

Table 12.1: Format Conversion Characters

A conversion specification begins with a percent sign (%) and ends with a conver-
sion character. The following optional items can be included, in order, between the
% and the conversion character to further control argument formatting:

® Flag characters are used to further specify the formatting. There are five flag characters:

* A minus sign (-) will cause an argument to be left-aligned in its field. Without the
minus sign, the default position of the argument is right-aligned.

+ Aplussign will insert a plus sign (+) before a positive signed integer. This only works
with the conversion characters d and | .

40

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 12
Reference Manual Primitives

» A space will insert a space before a positive signed integer. This only works with the
conversion characters d and i . If both a space and a plus sign are used, the space flag
will be ignored.

« A hash mark (#) will prepend a O to an octal number when used with the conversion
character O. If # is used with X or X it will prepend OX or OX to a hexadecimal
number.

« A zero (0) will pad the field with zeros instead of with spaces.

¢ Field width specification is a positive integer that defines the field width, in spaces, of the
converted argument. If the number of characters in the argument is smaller than the field
width, then the field is padded with spaces. If the argument has more characters than the
field width has spaces, then the field will expand to accommodate the argument.

Get NBi t s()

GetNBits (<bit_source list or raw>, <bit_offset
i nteger>, <bit_count integer>)

Parameter Meaning Default Value Comments
bit_source list, raw, or Can be an integer value (4 bytes) or a list of inte-
integer gers that are interpreted as bytes.
bit_offset integer Index of bit to
start reading
from
bit_count integer Number of

bits to read

Return value
None.

Comments

Reads bi t _count bits from bi t _sour ce starting at bi t _of f set . Will
return null if bi t _of f set +bi t _count exceeds the number of bits in
bit_source.Ifbit_count is 32 or less, the result will be returned as an
integer. Otherwise, the result will be returned in a list format that is the same as the
input format. Get NBi t S also sets up the bit data source and global bit offset used
by Next NBi t s and PeekNBi t s. Note that bits are indexed starting at bit 0.

Example
raw = ' FOFO ; # 1111000011110000 bi nary
result = GetNBits (raw, 2, 4);
Trace ("result =", result);

The output would be

41

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 12
Reference Manual Primitives

result = C # The result is given in
hexadeci mal . The result in binary is 1100.

Inthe callto Get NBi t s: starting at bit 2, reads 4 bits (1100), and returns the value
0xC.

Next NBi t s()

Next NBits (<bit_count integer>)

Parameter Meaning Default Value Comments

bit_count integer

Return value
None.

Comments

Reads bi t _count bits from the data source specified in the last call to

Get NBi t s, starting after the last bit that the previous call to Get NBi t S or
Next NBi t s returned. If called without a previous call to Get NBi t s, the result is
undefined. Note that bits are indexed starting at bit 0.

Example

raw = ' FOFO ;# 1111000011110000 bi nary
resultl = GetNBits (raw, 2, 4);

result2 = NextNBits(5);
result3 = NextNBits(2);
Trace ("resultl =", resultl, "result2 =", result2,
"result3 =", result3);

This will generate this trace output:
resultl = Cresult2 =7 result3 = 2

Inthe call to Get NBi t s: starting at bit 2, reads 4 bits (1100), and returns the value
0xC.

In the first call to Next NBi t s: starting at bit 6, reads 5 bits (00111), and returns
the value 0x7.

In the second call to Next NBi t s: starting at bit 11 (=6 + 5), reads 2 bits (10),
and returns the value 0x2.

42

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 12
Reference Manual Primitives

Resol ve()

Resol ve(<synbol _nane string>)

Parameter Meaning Default Value Comments

symbol_name string

Return value
The value of the symbol. Returns null if the symbol is not found.

Comments

Attempts to resolve the value of a symbol. Can resolve global, constant and local
symbols. Spaces in the synbol _nane parameter are interpreted as the ‘_’ (un-
derscore) character since symbol names cannot contain spaces.

Example
a = Resol ve("synbol");

is equivalent to:

a = synbol;
Trace()
Trace(<argl any>, <arg2 any>, ...)
Parameter Meaning Default Value Comments
arg any The number of arguments is variable.

Return value
None.

Comments
The values given to this function are given to the debug console.

Example
list = ["cat", "dog", "cow']
Trace("List =", list, "\n");

would result in the output

List = [cat, dog, cow

43

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 12
Reference Manual Primitives

44

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 13
Reference Manual Decoder Primitives

CHAPTER 13: DECODER
PRIMITIVES

Abort ()
Abort ()

Parameter Meaning Default Value Comments

N/A

Return value
An integer that should be passed back to the application unchanged.

Comments

Called when an input context renders the currently pending transaction done, but is
not itself a member of that transaction. An example would be an input transaction
that represents some sort of reset condition that renders all pending transactions
invalid. The input transaction is not consumed by this action and will go on to be
considered for other pending transactions.

Example

if (IsReset)
return Abort();

AddCel | ()

AddCel | (<nane string>, <value string>, <description
string or null>, <color integer or |ist>,
<addi tional _info any>)

Parameter Meaning Default Value Comments
name string Displays in the name field of the cell.
value string Displays in the value field of the cell.
description string or null Displays in tool tip.
color integer or list If not speci- Color can be specified as either a packed color

fied, a default value in an integer, or as an array of RGB values
coloris used ranging from 0-255. Displays in the name field
of the cell.

45

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 13

Reference Manual Decoder Primitives
Parameter Meaning Default Value Comments
additional_info any Used to create special cells or to modify cell

attributes. The values are predefined constants,
and zero or more of them may be used at one
time. Possible values are:

_COLLAPSED

_ERROR

_ EXPANDED

[_FI XEDW DTH, w]

_HI DDEN

_MONOCOLOR

_MONCFI ELD

_SHOWN (defaul t)

_WARNI NG

Return value
None.

Comments

Adds a display cell to the current output context. Cells are displayed in the order
that they are added. The name and value strings are displayed directly in the cell.

Example

Create a regular cell naned Normal with a val ue
"Cell"™ and tool tip "Normal cell":

AddCel I ("Normal ", "Valuel”, "Normal cell");

Use the MONOCOLOR value in the additional _info
paraneter to create a cell with a col or val ue of
0x881122 in both the nane and val ue fi el ds:

AddCel | ("MonoCol or", "Val ue2", "MnoCol or cell™",
0x881122, —MONOCOLOR);

Use the _MONOFI ELD value to create a cell with only
a nane field:

AddCel | ("MonoFi el d", "Val ue3", "MnoField cell™",
[255, 200, 200], _MONOFIELD);

Use the _ERROR value to create a cell wth a red
val ue field:

AddCel | ("Error", "Value4", "Error cell", 0Oxccll55,
_ERROR) ;

Use the WARNINGvalue to create acell wwth a yell ow
val ue field:

46

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 13
Reference Manual Decoder Primitives

AddCel | ("Warni ng", "Value5", "Warning cell",
0x00BB22, _WARNI NG);

Use the [_FI XEDWDTH, w] value to create a cell with
afixed width of 20 in conjuctionwith the error val ue
to create a fixed wwdth cell with a red value field:

AddCel | ("Fi xed Wdth 20", "Val ue6", "Fi xed Wdth and
Error cell", 0x001122, [_FI XEDW DTH, 20], _ERROR);

The output of the example is:

Marmal ManoCalar Error [WWarning Fixed Width 20

value? e Valued valueh

Figure 13-1: Example output for AddCel |

AddDat aCel | ()

AddDat aCel | (<data_val ue raw, list or integer>,
<additional _info any>, ...)
Parameter Meaning Default Value Comments
data_value raw, list, or Interpreted the same way as Get NBi t s inter-
integer prets dat a_sour ce
additional_info any Used to create special cells or to modify cell

attributes. Possible values are:
_BYTES
_COLLAPSED
_ DWORDS
_ EXPANDED
_HI DDEN

_SHOWN (defaul t)

Return value
None.

Comments

Creates an expandable/collapsible cell for viewing raw data such as data payloads.
Data can be raw bytes, an integer, or a list. If an integer is used, it will be interpreted
as 4 bytes of data. Specifying BYTES or DAWORDS in an addi ti onal _i nfo
field will force data to be interpreted as bytes or quadlets. _ COLLAPSED,
_EXPANDED, _HI DDENand _SHOWN are all interpreted the same is in a regular
AddCel | call.

47

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 13
Reference Manual Decoder Primitives

Example

Creates a data cell with 2 dwords (32-bit integers)
of data.

AddDat aCel | (' 0123456789ABCDEF', _DWORDS) ;

Creates a data cell with 4 bytes. Integer data
values are always interpreted as 32 bits of data.

AddDat aCel | (0x11223344, _BYTES);

The output of the example is:

01254567 B9ABCDEF |11 Z2 35 44
2 quadlets‘ﬂ bytes\

Figure 13-2: Example output for AddDat aCel |

AddEvent ()

AddEvent (<G oup string> <Value string>)

Parameter Meaning Default Value Comments
Group string The name of Corresponds to the name of a field that might be
the group encountered while decoding.
Value string A value that Corresponds to a field value that might be
will be encountered while parsing.
associated
with the group

Return value
None.

Comments

Events are used for transaction searching and for transaction summary. This
function is only effective when called during the Pr ocessDat a() phase of
decoding. Event groups and values are stored globally for transaction levels and
new ones are created as they are encountered. Each transaction contains informa-
tion as to which events were associated with it.

Example

AddEvent ("DatalLength", Format("%d",
out . DataLength));

48

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 13
Reference Manual Decoder Primitives

AddSepar at or ()

AddSepar at or (<addi tional _i nfo any>, ...)
Parameter Meaning Default Value Comments
additional_info any Used to create special cells or to modify cell

attributes. The values are predefined constants.
Possible values are:

_COLLAPSED

_ EXPANDED

_HI DDEN

_SHOMWN (defaul t)

Return value
None.

Comments

Creates a separator cell. _COLLAPSED, EXPANDED, _HI DDEN, and _ SHOMN
are all interpreted the same is in a regular AddCel | call.

Example
AddCel | ("Stuff", "Things");

AddSepar at or adds a space between the previ ous and
subsequent cells.

AddSeparat or () ;
AddCel | ("More stuff", "Mre things");

The output of the example is:

‘TWHQS\INOFEtWHQS
t

Separator cell

Figure 13-3: Separator cell
example

Begi nCel | Bl ock()

Begi nCel | Bl ock(<nane string>, <value string>,
<description string or null>, <color integer or list>,
<addi tional _i nfo any>)

Parameter Meaning Default Value Comments

name string Displays in the name field of the cell.

49

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 13

Reference Manual Decoder Primitives
Parameter Meaning Default Value Comments
value string Displays in the value field of the cell.
description string or null Displays in tool tip.
color integer or list If not speci- Color can be specified as either a packed color

fied, a default value in an integer, or as an array of RGB values
coloris used ranging from 0-255. Displays in the name field
of the cell.

additional_info any Used to create special cells or to modify cell
attributes. The values are predefined constants,
and zero or more of them may be used at one
time. Possible values are:
[_BLOCKNAME, x]
_COLLAPSED
_ERROR
_ EXPANDED
[_FI XEDW DTH, w]
_Hi DDEN
_MONOCOLOR
_MONCFI ELD
_SHOWN (defaul t)
_WARNI NG

Return value
None.

Comments

Begins a cell block and adds a block header cell. This is a special cell that can be
collapsed and expanded. The collapsed/expanded state of this cell affects cells in
the group according to their _ COLLAPSED, _EXPANDED attributes. All calls to
AddCel | after a call to Begi nCel | Bl ock() will put the new cells into this
group until a call to EndCel | Bl ock is made.

Cell blocks can be nested.

Example

Beginthe "red group. For clarity these cells wll
be red:

Begi nCel | Bl ock("Red Group", null, null, 0x0000ff,
_MONCFI ELD) ;

This cell will be displayed when the red groupis in
t he expanded st at e:

AddCel | ("Red is", "Expanded"”, null, 0x0000ff,
_ EXPANDED) ;

50

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 13
Reference Manual Decoder Primitives

This cell will be displayed when the red group is
col | apsed:

AddCel I ("Red is", "Collapsed", null, 0x0000ff,
_COLLAPSED);

This begins the nested blue group. Nothing in the
bl ue group will be displayed unless the red group is
expanded:

Begi nCel | Bl ock("Blue G oup”, null, null, Oxff0000,
_MONCOFI ELD, _EXPANDED, [_BLOCKNAME, "Bl ockName"]);

This cell is only displayed when the blue group is
vi si bl e and expanded:

AddCel | ("Blue is", "Expanded", null, Oxff0000,
_EXPANDED) ;

This cell is also only displayed when the bl ue group
i's visible and expanded:

AddCel | ("Bl ue", "Too", null, Oxff0000, _EXPANDED);

This cell is only displayed when the blue group is
vi si bl e and col | apsed:

AddCel I ("Blue is", "Collapsed", null, O0xff0000,
_COLLAPSED);

This ends the bl ue group.
EndCel | Bl ock();

Cells with the SHOM attribute are al ways
di splayed. This is the default:

AddCel | (" Al ways", "Shown", null, 0x0000ff, _SHOWN);

This cell will never be displayed. In areal script
this would be driven by a vari abl e:

AddCel | ("Never", "Shown", null, 0x0000ff, _H DDEN);
This ends the red group.
EndCel | Bl ock() ;

51

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 13
Reference Manual Decoder Primitives

The output of the example is:

.3

Redis
Collapsed | Shown

Al WS

Red Group

Figure 13-4: Example output for
Begi nCel | Bl ock with red group
collapsed

4 L3

Redis

Blugis Always

Red Group Blue Group
F Expanded F Collapsed
Figure 13-5: Example output for Begi nCel | Bl ock with red group

expanded and blue group collapsed

4 4

Redis Elugis Blue
Expanded Expanded | Too

Figure 13-6: Example output for Begi nCel | Bl ock with red group expanded
and blue group expanded

Al WS

Red Group Elue Group

Conpl et e()
Conpl et e()

Parameter Meaning Default Value Comments

Return value
An integer that should be passed back to the application unchanged.

Comments

This should be called when it has been decided that an input context has been
accepted into a transaction, and that the transaction is complete. The return value
of this function should be passed back to the application from the Pr ocessDat a
function. This function could be used to associate the input context with the output
context.

Example
if (done)
return Conplete();

52

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 13
Reference Manual Decoder Primitives

EndCel | Bl ock()
EndCel | Bl ock()

Parameter Meaning Default Value Comments

Return value
None.

Comments

Ends a cell block that was started with
Begi nCel | Bl ock().

Example
See Begi nCel | Bl ock() .

GetBitO fset()
GetBi t Off set ()

Parameter Meaning Default Value Comments

N/A

Return value
None.

Comments
Returns the current bit offset that is used in Next NBi t s or PeekNBi t s.

Example
raw = ' FOFO ; # 1111000011110000 bi nary

resultl = GetNBits (raw, 2, 4);
result2 = PeekNBits(5);

result3 = NextNBits(2);

Trace ("Ofset =", GtBitOfset());

The example generates this Trace output:
Ofset =D

53

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 13
Reference Manual Decoder Primitives

PeekNBi t s()

PeekNBi t s(<bi t _count i nteger>)

Parameter Meaning Default Value Comments

bit_count integer

Return value
None.

Comments

Reads bi t _count bits from the data source. The difference between

PeekNBi t s and Next NBi t s is that PeekNBi t s does not advance the global
bit offset. PeekNBi t s can be used to make decisions about how to parse the next
fields without affecting subsequent calls to Next NBi t s. [f PeekNBi t s is called
without a prior call to Get NBi t s, the result is undefined. Note that bits are indexed
starting at bit 0.

Example

raw = ' FOFO ; # 1111000011110000 bi nary
resultl = GetNBits (raw, 2, 4);

result2 = PeekNBits(5);

result3 = NextNBits(2);

Trace ("resultl =", resultl, "result2 =", result2,
"result3 =", result3);

This will generate this Trace output:
resultl = Cresult2 =7 result3 =0

Inthe callto Get NBi t s: starting at bit 2, reads 4 bits (1100), and returns the value
0xC.

In the call to PeekNBI t s: starting at bit 6, reads 5 bits (00111), and returns the
value 0x7.

In the call to Next NBi t s: starting at bit 6, reads 2 bits (00), and returns the value
0x0.

Pendi ng()

Pendi ng()

Parameter Meaning Default Value Comments

54

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 13
Reference Manual Decoder Primitives

Return value
An integer that should be passed back to the application unchanged.

Comments

This should be called when it has been decided that an input context has been
accepted into a transaction, but that the transaction still requires further input to be
complete. This function could be used to associate input contexts with the output
context. The return value of this function should be returned to the application in
the Pr ocessDat a function.

Example
if (done)
return Conplete();
el se return Pending();

Rej ect ()

Rej ect ()

Parameter Meaning Default Value Comments

Return value
An integer that should be passed back to the application unchanged.

Comments

Called when it is decided that the input context does not meet the criteria for being
a part of the current transaction. The output context should not be modified before
this decision is made. The return value of this function should be returned by the
Pr ocessDat a function.

Example

if (UnknownVal ue)
return Reject();

55

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 13
Reference Manual Decoder Primitives

56

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 14
Reference Manual FireInspector-Specific Primitives

CHAPTER 14: FIREINSPECTOR-
SPECIFIC PRIMITIVES

Bitfield nit()

Bitfieldlinit(<bitfield_ identifier string>,
<title string>)

Parameter Meaning Default Value Comments
bitfield_identifier string The name of Used to refer to this bitfield data structure in sub-
the bitfield sequent calls to other primitives.

data structure

title string Displays in the title bar of the dialog box.

Return value
None.

Comments

Bi t fi el dl nit initializes the data structure for keeping field information. This
field information can be presented to the user in the form of a dialog box (see
“BitfieldDi al og()” on page 58). The primitives Get NBi t s and

Next NBi t s both support optional arguments for appending information to this
data stucture (see “Get NBi t s -- Additional parameters” on page 57 and

“Next NBi t s -- Additional parameters” on page 58).

Example
See “Example for FireIlnspector-Specific Primitives” on page 60.

Get NBi t s -- Additional parameters

CGet NBi t s contains two additional, optional arguments in FireInspector to add
datatothe Bi t fi el dl ni t data structure: bi tfi el d_i dentifier and
bitfield_| abel .In Firelnspector, Get NBi t s has this structure:

GetNBits(<bit_source list or raw>, <bit_offset
integer>, <bit_count integer> <bitfield_identifier
string>y, <bitfield_label string>gy)

Usebitfield_ identifier toreferto a bitfield data structure that has been

namedinaBi tfi el dl nit declaration. Use bi tfi el d_| abel toassigna
label to the group of bits being read. For example:

GetNBits(data, 0, 1, "ldentifier", "Label");

57

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 14
Reference Manual FireInspector-Specific Primitives

In the example, “Identifier” is the value of bi t fi el d_i denti fi er and
“Label” is the value of bi t fi el d_| abel .

For a complete description of Get NBi t s, see “Get NBi t S() ” on page 41.

Example
See “Example for FireIlnspector-Specific Primitives” on page 60.

Next NBi t s -- Additional parameters

Next NBi t s contains an additional, optional argument in FireInspector to add data
tothe Bi t fi el dl ni t data structure: bi t fi el d_| abel . In Firelnspector,
Next NBi t s has this structure:

Next NBi t s(<bit _count integer>, <bitfield_|abel
string>gpt)

Usebi tfiel d_| abel toassignalabel to the bits being read, and put them in the
bitfield referred to by the previous call to Get NBi t s. For example:

Next NBits(3, “Label”)
For a complete description of Next NBi t s, see “Next NBi t S() ” on page 42.

Example
See “Example for FireInspector-Specific Primitives” on page 60.

BitfieldD al og()

BitfieldD al og(<bitfield identifier string>,
<wi dt h i nt eger>)

Parameter Meaning Default Value Comments
bitfield_identifier string ~ The name of Refers to the bitfield data structure from which to
the bitfield get the data.
data structure
width integer The width, in Currently, width specification of other than 32
bits, of the bits will yield unpredictable results.
data field

Return value
None.

58

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 14
Reference Manual FireInspector-Specific Primitives

Comments

Bi tfi el dD al og brings up a dialog box in which the user can view the fields
that were parsed for a particular protocol-dependent data structure. The primitive
returns when the user hits the 'OK' button on the dialog box, which causes the box
to close. Bi tfi el dDi al og is not usually called directly while parsing, but
instead is handed off in a menu descriptor when constructing a cell (see “AddCel |
-- Supplementary addi t i onal _i nf o constants” on page 59).

Example
See “Example for Firelnspector-Specific Primitives” on page 60.

AddCel | -- Supplementary addi ti onal _info
constants

The AddCel | addi ti onal _i nf o parameter contains a supplementary,
optional, constant value in Firelnspector that builds a menu cell: _ MENU. It’s used
to create a cell that, when left-clicked upon, will bring up a menu.

The descriptor _ MENU serves as the head of a list that defines a menu:
[MENU, <nenu_nane string>, <nmenu_itens |ist>]

The first item, _MENU, identifies the list as containing a description of a menu. The
second item, MeNnu_nane, is the name that appears at the top of the menu.

The third item in the list is the menu_i t ens list. It can contain one or more items;
each of those items is a menu_i t em el enent s list. A
menu_it em el enent s list is structured as follows:

[<menu_action_id integer> <nmenu_entry string>,
<menu_action_function string> <nmenu_argunments |ist>]

The value of menu_act i on_i d is an integer that uniquely identifies a menu
command. This should be unique among all of the cells of a transaction.

The value of mMenu_ent ry is a text string that appears as an entry on the menu.
When selected, it brings up the dialog identified by the menu_ar gunent s list.

The value of menu_act i on_f unct i on is string that identifies the function to
be called if the menu entry is selected.

The value of menu_ar gunent s is a list of arguments for
menu_action_functi on.

[<argument |ist |ist>]

For a full description of AddCel | , see “AddCel | () ” on page 45.

59

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 14
Reference Manual FireInspector-Specific Primitives

Example
See “Example for Firelnspector-Specific Primitives” on page 60.

Example for Firelnspector-Specific Primitives

Example Code

Currently, Bitfieldlnit() nust be contained within
a Col | ect Dat a nodul e:

Col | ect Dat a()

{

data = '0123456789abcdef’

Bitfieldlnit("stuff", "This is a view field
di al og");

GetNBits(data, O, 1 "stuff", "a");
Next NBi t s(2,
NextNBits(3, "
Next NBi t s(4,
Next NBi t s(5,
NextNBits(6, "

1

3

"b"
Cc
"d"
e
fll

Next NBi t s(
Next NBi t s(

1, "g");
2, "second quadlet");

data = ' 89abcdef 01234567" ;

Bitfieldinit("nore_stuff”, "This is another view
field dialog");

GetNBits(data, 0, 1, "nore_stuff", "h");

NextNBits(2, "i");

NextNBits(3, "j")

NextNBits(4, "k");

NextNBits(5, "I")

Next NBits(6, "ni)

NextNBits(11, "n");

Next NBi ts(32, "fourth quadlet");
}

Bui | dCel I Li st()

{
AddCel | ("Click here for menu", null, null
0x0000f f, _MONCFI ELD

60

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 14
Reference Manual FireInspector-Specific Primitives

_MENU descriptor and nenu_nane
[MENU, "Menu entries appear below ",
Begin nenu_itens
[
Begin first nenu_itemelenents |ist
[
menu_action_id
0,

menu_entry
"View Stuff",

menu_action_function
"BitfieldD al og",

Begin nmenu_argunents |ist

[
bitfield identifier
"stuff",

w dth
32

End nenu_argunents |i st

]

End first menu_itemelenments |ist

1,

Second nenu_itemel enents |i st
[1, "View More Stuff", "Bitfiel dD al og”
["noOre_stuff"”, 32]]

End nenu_itens

]
End _MENU descriptor Iist and AddCel

1);
}

61

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 14
Reference Manual FireInspector-Specific Primitives

Example Output
The AddCel | entry builds the cell that contains the menu:

Click here far menu

Figure 14-1: Menu
cell

Clicking on the cell brings up the menu defined in the _MENU descriptors list:

Click here far menu

Menu entries appear below;

Wigwm StuFF

Wigw More Stuff e

Figure 14-2: Menu

Clicking on a menu entry brings up the dialog box:

This is another view field dialog Test Cells #0 x|
Hewxadecimal | Bifamy |
hl i I k. | i h ;I
1(0x0] Ox2 (6 0415 239 (<5EF
lazt quadlet
(01234567
<4 Previous et > |

Figure 14-3: Dialog box

62

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 14
Reference Manual FireInspector-Specific Primitives

The dialog box displays the data that is referred to by the bitfield identifier
“nore_stuff”.

63

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 14
Reference Manual FireInspector-Specific Primitives

64

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 15
Reference Manual Modules

CHAPTER 15: MODULES

Modules are a collection of functions and global data dedicated to decoding a
certain type of transaction. Each module consists of one primary file (.dec), and
possibly several included files (.inc).

Module Functions

Three functions are used as entry-points into a decoding module. They are called
by the application and are used both in the initial transaction decoding phase, and
each time that a transaction needs to be displayed.

ProcessDat a()

Called repeatedly with input contexts representing transactions of the specified
input types. Decides if input transaction is a member of this transaction, or if it
begins a new transaction. This function will be called first using incomplete output
transactions. If the input transaction is not accepted into any of the pending trans-
actions, it will be called with an empty output transaction to see if it starts a new
transaction.

Col | ect Dat a()

Called with each input transaction that was previously accepted by the function
Pr ocessDat a. Generates all output context data that would be required for input
into a higher level transaction.

Bui | dCel | Li st ()

Called with the output context generated by the call to Col | ect Dat a, and no
input context. This function is responsible for adding display cells based on the data
collected by Col | ect Dat a.

Note that there is some flexibility in the use of these functions. For example, if it is
easier for a particular protocol to build cells in Col | ect Dat a, cells could be
generated there, and Bui | dCel | Li st could be left empty. Another approach
would be to have Pr ocessDat a do everything (generate output data, and build
cell lists) and then implement Col | ect Dat a as a pass-thru to Pr ocessDat a.
This will be less efficient in the decoding phase but may reduce some repetition of
code. These decisions are dependent on the protocol to be decoded.

65

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 15
Reference Manual Modules

Module Data

There are several standard global variables that should be defined in a module
which are queried by the application to figure out what the module is supposed to
do.

Modul eType

Required. A string describing the role of the script. Currently, only
Transaction Decoder and Dat aBl ock Decoder are valid.

Example
set Modul eType = "Transacti on Decoder"”;

Transacti on Decoder uses ProcessDat a(). Dat aBl ock Decoder
does not.

Qut put Type

Required. A string label describing the output of the script. Example : AVC
Transacti on

Example
set CQutput Type = "AV/ C Transaction”;

| nput Type

Required. A string label describing the input to the script. Input and output types
should be matched by the application in order to decide which modules to invoke
on which contexts.

Example
set | nput Type = "1394 Transaction";

Level Nane
Optional. A string that names this decoder.

Example
set Level Nanme = "AV/ C Test Transactions";
Decoder Desc
Optional. A string that describes this decoder. Displays as a toolbar icon tool tip.
Example
set DecoderDesc = "View test transactions”;

66

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 15
Reference Manual Modules

| con

Optional. File name of an icon to display on the toolbar. Must be a 19x19 pixel
bitmap file.

Example
set lcon = "bitmp. bmp";

67

CATC SCRIPTING LANGUAGE 1.0 CHAPTER 15
Reference Manual Modules

68

	Table of Contents
	Chapter 1: Introduction
	Chapter 2: Values
	Literals
	Integers
	Strings
	Escape Sequences

	Lists
	Raw Bytes
	Null

	Variables
	Global Variables
	Local Variables

	Constants

	Chapter 3: Expressions
	select expression

	Chapter 4: Operators
	Operations
	Operator Precedence and Associativity

	Chapter 5: Comments
	Chapter 6: Keywords
	Chapter 7: Statements
	Expression Statements
	if Statements
	if-else Statements
	while Statements
	for Statements
	return Statements
	Compound Statements

	Chapter 8: Preprocessing
	Chapter 9: Context
	Chapter 10: Transaction and Packet Context Fields
	Transaction Context Fields
	1394 Transactions
	IPv4 over 1394 Transactions
	IP Datagram Transactions
	Datagram header fields

	IP Protocol Transactions
	TCP header fields
	UDP header fields
	ICMP header fields

	FCP Transactions:
	Fields in all FCP transactions:
	Fields defined for AV/C transactions:

	Packet Context Fields
	Fields defined for packet-level transactions in FireInspector
	Standard 1394 packet field names

	Example

	Chapter 11: Functions
	Chapter 12: Primitives
	Call()
	Format()
	Format Conversion Characters

	GetNBits()
	NextNBits()
	Resolve()
	Trace()

	Chapter 13: Decoder Primitives
	Abort()
	AddCell()
	AddDataCell()
	AddEvent()
	AddSeparator()
	BeginCellBlock()
	Complete()
	EndCellBlock()
	GetBitOffset()
	PeekNBits()
	Pending()
	Reject()

	Chapter 14: FireInspector- Specific Primitives
	BitfieldInit()
	GetNBits -- Additional parameters
	NextNBits -- Additional parameters
	BitfieldDialog()
	AddCell -- Supplementary additional_info constants
	Example for FireInspector-Specific Primitives
	Example Code
	Example Output

	Chapter 15: Modules
	Module Functions
	ProcessData()
	CollectData()
	BuildCellList()

	Module Data
	ModuleType
	OutputType
	InputType
	LevelName
	DecoderDesc
	Icon

